Communication Dans Un Congrès Année : 2024

Geospatial Uncertainties: A Focus on Intervals and Spatial Models Based on Inverse Distance Weighting

Résumé

Processing geospatial data requires to manage many sources of uncertainties; some appear in classical inference problems, some others are specific to this setting. The goal of this paper is to study the management of these uncertainties via standard intervals and sets when the inference model considered relies on inverse distance weighting. We provide a general discussion with examples, together with a study of the associated optimisation problems induced by different sources of uncertainty. We conclude the paper by an illustration on a semi-synthetic use case, generated according to data recorded via real studies.
Fichier principal
Vignette du fichier
labourg24a.pdf (7.33 Mo) Télécharger le fichier
Origine Fichiers produits par l'(les) auteur(s)

Dates et versions

hal-04886105 , version 1 (14-01-2025)

Identifiants

Citer

Priscillia Labourg, Sébastien Destercke, Romain Guillaume, Jeremy Rohmer, Benjamin Quost, et al.. Geospatial Uncertainties: A Focus on Intervals and Spatial Models Based on Inverse Distance Weighting. Information Processing and Management of Uncertainty in Knowledge-Based Systems, Jul 2024, Lisboa, Portugal. pp.377-388, ⟨10.1007/978-3-031-74003-9_30⟩. ⟨hal-04886105⟩
0 Consultations
0 Téléchargements

Altmetric

Partager

More