Communication Dans Un Congrès Année : 2024

r-ERBFN : an Extension of the Evidential RBFN Accounting for the Dependence Between Positive and Negative Evidence

Résumé

Recently, it was shown that a radial basis function network (RBFN) with a softmax output layer amounts to pooling by Dempster's rule positive and negative evidence for each class, and approximating the resulting belief function by a probability distribution using the plausibility transform. This so-called latent belief function offers a richer uncertainty quantification than the probabilistic output of the RBFN. In this paper, we show that there exists actually a set of latent belief functions for a RBFN. This set is obtained by considering all possible dependence structures, which are described by correlations, between the positive and negative evidence for each class. Furthermore, we show that performance can be enhanced by optimizing the correlations brought to light.
Fichier principal
Vignette du fichier
sum2024.pdf (476.94 Ko) Télécharger le fichier
Origine Fichiers produits par l'(les) auteur(s)

Dates et versions

hal-04788662 , version 1 (18-11-2024)

Identifiants

Citer

Frédéric Pichon, Serigne Diène, Thierry Denoeux, Sébastien Ramel, David Mercier. r-ERBFN : an Extension of the Evidential RBFN Accounting for the Dependence Between Positive and Negative Evidence. 16th International Conference Scalable Uncertainty Management (SUM 2024), Nov 2024, Palermo, Italy. pp.354-368, ⟨10.1007/978-3-031-76235-2_26⟩. ⟨hal-04788662⟩
13 Consultations
12 Téléchargements

Altmetric

Partager

More