Communication Dans Un Congrès Année : 2024

Monchi: Multi-scheme Optimization For Collaborative Homomorphic Identification

Alberto Ibarrondo Luis
Vincent Despiegel
  • Fonction : Auteur
  • PersonId : 1379183
Melek Önen

Résumé

This paper introduces a novel protocol for privacy-preserving biometric identification, named Monchi, that combines the use of homomorphic encryption for the computation of the identification score with function secret sharing to obliviously compare this score with a given threshold and finally output the binary result. Given the cost of homomorphic encryption, BFV in this solution, we study and evaluate the integration of two packing solutions that enable the regrouping of multiple templates in one ciphertext to improve efficiency meaningfully. We propose an end-to-end protocol, prove it secure and implement it. Our experimental results attest to Monchi’s applicability to the real-life use case of an airplane boarding scenario with 1000 passengers, taking less than one second to authorize/deny access to the plane to each passenger via biometric identification while maintaining the privacy of all passengers.
Fichier principal
Vignette du fichier
2024-654.pdf (837.94 Ko) Télécharger le fichier
Origine Fichiers produits par l'(les) auteur(s)

Dates et versions

hal-04562874 , version 1 (06-05-2024)

Identifiants

Citer

Alberto Ibarrondo Luis, Ismet Kerenciler, Hervé Chabanne, Vincent Despiegel, Melek Önen. Monchi: Multi-scheme Optimization For Collaborative Homomorphic Identification. IH&MMSec 2024, 12th ACM Workshop on Information Hiding and Multimedia Security, ACM, Jun 2024, Baiona, Spain. ⟨10.1145/3658664.3659633⟩. ⟨hal-04562874⟩
1338 Consultations
90 Téléchargements

Altmetric

Partager

More